

COMMUNITY AWARENESS SYSTEM
FOR ANDROID DEVICES

Design Document (VERSION 3.0)

Group : DEC1618 (dec1618@iastate.edu)

Clients : Dr Daji Qiao, Dr. George Amariucai

1

Advisors​: Dr. Daji Qiao, Dr. George Amariucai

Team Members/Role:

Jason Wong: Team Leader

Erik Fetter: Communication Leader
Matt Gerst: Team Webmaster

Shikhar Vats: Key Concept Holder
Brad Anson: Key Concept Holder

Adit Kushare: Key Concept Holder

DEC1618

2

Contents

1 Introduction 3
1.1 Project statement 3
1.2 Purpose 3
1.3 Goals 4

2 Deliverables 5

3 Design 5
3.1 System Specifications 5

3.1.1 Non-functional 5
3.1.2 Functional 5

3.2 Proposed Design/Method 6
3.3 Design Analysis and Current Work 7

4 Testing/Development 10
4.1 Interface Specifications 10
4.2 Hardware/Software 11
4.3 Process 12

5 Results 13

6 Conclusions 13

7 References 13

DEC1618

3

1 Introduction

1.1 Project statement
The National Security Agency has expressed an interest in developing a

community awareness system for Android devices. In result, Dr. Daji Qiao and Dr.

George Amariucai have been assigned to research and create a working prototype of

such a system through our senior design project. The purpose of this project is to

provide a squad of US soldiers the ability to create a secure network using their Android

devices. Each soldier would carry an Android device and have the ability to view the

approximate location of their squad members and query for information from these

devices. The information to be queried includes the device's battery level, GPS

coordinates, accelerometer reading, and 5 second audio/video clips from the target

device. The query must return the information within 10 seconds.

1.2 Purpose
This networking component​ ​of this technology could potentially be used for

military purposes. For example, a platoon of soldiers could be deployed in the field with

their devices all networked together. The end goal is to have the network provide a

medium of transmission for vital information such as troop movement and location.

Additionally, this project allows for more interconnectivity among people in remote

areas. Often times remote underdeveloped areas don't have the infrastructure to

support wireless communication. The high cost of deploying routers and towers and the

low mobility often makes this technology not applicable/feasible. However with mesh

networking, we are now able to bring a flexible network that is not only mobile but also

a cost effective solution to wireless networking between devices.

The data collection​ ​portion of this project will be fed into a Biometric Engine

being developed by a separate development team. The data to be collected so far

includes accelerometer information, GPS location, 5 second video and audio clips, etc.

DEC1618

4

The Biometric Engine will use the data collected in the app to verify the identity of the

person using the phone and their surroundings. For example, audio could be processed

to indicate possible problems such as gunfire, unknown voices, or used to help locate

lost soldiers.

1.3 Goals
Project Goals:

1. Successful proof of concept: The main goal is to showcase a working proof of

concept to the NSA and have our project move closer to being deployed to real US

soldiers.

2. Soldier safety: The main purpose of our project is to give troops a way to share

vital information with their fellow troops such as relative location, audio and

video snippets, and other information that can be used to calculate the safety of

soldiers.

3. Cheaper communications: A possible implication for our project is to allow

communications in remote areas or third world countries where there is a lack of

infrastructure that supports communications. Cell towers, telephone lines, and

other infrastructure have high costs and having the ability to create wireless

networks of communications can be a cheaper alternative.

4. Publish our application to the Google PlayStore: Another possible outcome of our

project is to publish our application to the Google Play Store for the general

public to use.

Learning Goals:

1. Learn Android: Few of our team members are new or inexperienced in Android

development and this project would give us a good way to learn Android.

2. Learn Network Principles: Many of us are not familiar with basic networking

principles that will most likely be needed to complete our project such as IPv4,

DEC1618

5

TCP, UDP, routing protocols, etc. Learning these networking principles are

aligned with our interests and will help us in developing a quality product.

3. Learn Team Dynamics: All of us are aspiring to be successful engineers and we

recognize that learning to work in a team is an important skill.

4. Learn Agile Development: Our goal is to approach this project with an Agile

development lifecycle. Many of us have learned the basic principles of Agile

during our coursework but have never applied it to a long term project such as

this.

2 Deliverables
We will deliver an Android application which can create and maintain an ad-hoc

mesh network with other Android devices as well as have the ability to collect and

distribute various sensor data around the created network. For our project, we will also

create a visualization portion that will show the network topology, users in the network,

and sensor data collected from those users.

The ultimate goal is to integrate our network application to allow other Android

applications to utilize the mesh networking capability. In result, along with our

application we will provide an API in which other applications can connect to and utilize

our application’s networking capability.

3 Design

 3.1 System Specifications

3.1.1 Non-functional
● Periodic network updates should be quick without a major battery drain

● Network should be resistant to device loss by using the mesh topology

● Users should know in a reasonable amount of time if a device has left the mesh

DEC1618

6

● Remote data collection should be received in a reasonable amount of time (5-10

seconds)

● Collection of data should occur in the background, without UI interaction

● Android codebase should largely be modular and good/best practice (aside from

the necessary rooting of the devices)

● The application does not need to scale very large, but it should be able to handle

10-20 devices on the network.

3.1.2 Functional
● A user should be able to find out who else is on the mesh network

● Users should be able to request information about other users on the network

● Network module should provide as many metrics, such as RSSI, if possible

● Users should be able to see a network topology, possibly organized to represent

relative positions, which shows how many hops to another user

● The Application should expose both a network API usable by other applications

and a sensor/inference API for the inference engine

3.2 Proposed Design/Method
This project can be divided into three distinct interconnected system layers:

● Sensor Layer: The sensor layer essentially has functions to collect the raw data

from the various sensors on the android device. This information from various

sensors including, but not limited to, accelerometer, gyroscope, barometric

sensors, is analyzed to generate a confidence number which would be used for

communication with the other android devices. The results from the sensor layer

are transmitted to the network layer which then uses the information to

communicate with the other devices on the network.

● Network Layer: This layer encapsulates the core functionality of the project. The

android devices in our system would be interconnected using wireless ad-hoc

network mesh topology. The network layer is responsible for establishing and

DEC1618

7

maintaining a connection between the android devices in the system. The higher

level application layer queries information before transmitting the information,

the network layer will query the sensor layer, which replies with the analyzed

sensor data (see Sensor Layer). The network layer on the receiving device

receives the information, and then transmits it to the higher application layer.

● Application Layer: This layer acts as the UI layer for the application. The flow of

queries and information starts after the application layer queries the network

layer for information from any other device in the mesh network system.

Figure: Flow of information between two devices on the network

1. The Application layer from Device A queries the network layer to access data from Device B.
2 The Network layer from Device A sends the query to Device B

DEC1618

8

3 The Network layer from Device B receives the query, and queries the sensor layer in turn for
the information.
4 The Sensor layer receives the query, collects the sensor data, and replies to the network
layer with the analyzed result.
5 The Network layer receives the information from the sensor layer, and transmits it to the
Network layer on Device A.
6 The Network layer on Device A receives the information from Device B and sends it to the
Application Layer.
7 The received information is displayed on the Device A

3.3 Design Analysis and Current Work
● Received Signal Strength Indication (RSSI)

○ This essentially tells the user about the proximity of any other device in

vicinity. Wifi RSSI is normally available via normal Android API; however,

in ad-hoc mode this is not possible. To solve this problem we looked into

alternatives such as native libraries like iwlist and iwspy. Unfortunately

they were not supported by our testing device (Nexus 7) hardware. To

solve the problem we decided to use Bluetooth RSSI. Even though helpful,

using the Bluetooth RSSI values has its own disadvantages like:

■ A shorter range than the wifi RSSI

■ Different android tablets/phones may have different Bluetooth

chipsets which would give different RSSI values under the same

conditions. We want to avoid that.

■ Bluetooth RSSI value between two “visible” android devices

depends on several factors; battery level of the phone, and the

orientation of the device are among them. This essentially means

that at two different time instants the value for RSSI returned

would be different for the devices in the same position.

Despite these drawbacks, we have decided to move forward with the

Bluetooth RSSI. The reason being that for our current needs we need a

way to tell the user about the distance of the other devices in the network

relative to his/her position which can be achieved using our approach. We

DEC1618

9

are simultaneously also looking into figuring out a way to make RSSI work

with the ad-hoc wifi mode.

Registering the Bluetooth discovery BroadcastReceiver with the activity. src: code

Creating an adapter for each Bluetooth device to discover. The intent is used to

 enable the bluetooth on the device.

The BroadcastReceiver class that receives the request from the activity to search for bluetooth

devices and display the RSSI values.

● I​nterapplication Communication

DEC1618

10

○ In order to create a communication interface between the different layers

such as the network and application layer we have explored possible

solutions via Android’s available API. We have found that Android services

and BroadcastReceivers allow us to create this interface. Services and

BroadcastReceivers run in the background which works perfectly for the

sensor request feature where essentially we would want the services to

perform the sensor capture function hidden from the user once the user

gives the command. This adds a sense of data encapsulation to the

application.

● Video/Audio Capture

○ We have made progress to perform 5 second video and audio captures.

The application is now able to send a request to another device to order

their camera/microphone to perform a capture and send back the

recorded file to the source device. Our next step is to figure out a way to

perform this feature when one of the phone is in sleep mode i.e. when the

phone’s screen is off. For example, when a soldier has their phone in their

pocket but another soldier in the mesh network wants to record 5 seconds

of audio, the phone in the pocket must know when to wake up to respond

to the query. We are exploring a lead on android’s AndroidManager class

to figure out a solution to the problem.

● TP-Link TL-MR3020

○ We ordered 3 routers to test out the ad-hoc mesh networking when

offloaded to the routers. We have run basic testing procedures by using the

routers along with the current ServalMesh application. The tests have been

positive so far, indicating that the application is supported by the routers.

Our next step is to perform rigorous testing in this regard.

● Custom Network Protocol

○ In order to facilitate sending commands between nodes on the mesh, we

will implement a custom protocol. The custom protocol will support

DEC1618

11

sending commands such as Request, Response, Status, Error, Start and

Stop. Many of these commands are left somewhat open-ended in order for

the applications using the protocol may interpret the commands as

needed.

● Video/Audio Transfer

○ As serval does not provide an existing method to transfer files directly

between devices, we will need a method to do so. Serval does provide a

Mesh Streaming Protocol (MSP) that allows for using TCP over a tunnel.

We will use these tunnels to transfer files directly instead of uploaded

them to the entire mesh.

4 Testing/Development

4.1 Interface Specifications
Software API

● NetworkAPI Class

○ sendCommand(destination, payload, type)​: Sends a command using the

custom command protocol. Takes care of threading in order to avoid

network activity on the main thread exceptions.

○ sendFile​(destination, file, metadata): Starts a file transfer over the Mesh

Streaming Protocol. Like sendCommand, it ensures the threading is

handled correctly.

○ sendError(destination, payload)​: Sends an error message to the

destination device. Ultimately calls sendCommand with the appropriate

arguments.

● Sensor Class

○ captureVideoClip()​: this should cause the phone to capture a 5 second

video clip even if the screen was off.

DEC1618

12

○ captureAudioClip()​: this should cause the phone to capture a 5 second

audio clip even if the screen was off.

4.2 Hardware/Software
For the testing phase, our requirements can be categorized into hardware and

software categories as follows:

Hardware:

● Tablets/Mobile phones based on Android OS and having root access

○ Nexus 7 (at least 4)

○ Htc One (at least 2)

○ Nexus 6 (at least 2)

● TP-Link TL- MR3020 routers (at least 3)

Software:

● A working prototype of the android application

For a successful testing of our product, we need to test our prototype application

across as many android devices (with at least API 14) from different manufacturers as

possible. The reason behind is to ensure the compatibility of our application with the

other android devices. Further we need our android devices to have root access. The

reason behind this is that android devices by default do not support ad-hoc networking.

Since our application heavily depends on ad-hoc networking for the mesh network,

therefore this is one of the core requirement for any android device to be used in the

testing phase.

We have two approaches for the final deliverable product. The first one is to

deliver an android application which has the root access to the devices. The

requirements for which were discussed in the previous paragraph. The second approach

is to use wireless routers with each device that would be responsible for the ad-hoc

networking part. In addition to the routers we’ll still need android devices, but now we

do not need the android devices to have a root access.

DEC1618

13

4.3 Process
Serval project was always a key component of our project and was going to be

underlying piece of code that enabled us to communicate between two devices directly.

Some of the thought process behind the hardware choices made so far is explained in

the following paragraph.

We started out with the goal of making the serval project work on non rooted

android devices at the application layer. We quickly realized that this was not possible

hence we rooted some Nexus 7 devices and installed Cyanogen Mod on them. With

serval mesh up and running on the Nexus 7’s our next step was to test serval mesh on

unsupported devices. To that effect we ordered two Nexus 6’s and two HTC one phones.

We also ordered battery powered routers as a part of plan B in case it doesn't work on

the unsupported devices. As of now we have been able get the serval mesh app working

on the unsupported devices as well, with some glitches here and there. The 3 routers

ordered also have been able to work great. Below we discuss some of the processes

behind the software side of the project.

One of the first tasks was to create an environment in android that would be able

to build the serval project. After the environment was set up we started making progress

on two fronts, namely networking and sensor data collection. On the network side of

things, the first goal was to integrate the batphone part of serval mesh into our android

project and then progress onto other networking goals such as gauging the device

topography by acquiring the distance between two devices using RSSI (Signal strength

indicator). On the sensor collection side of things the first goal was to familiarize

ourselves with collecting various sensor data with the use of a button in an android

application. Then we moved on to collecting this data in the background with the use of

a service. From here on out we are working toward establishing an API of sorts that will

make use of inter application communication to send and receive relevant sensor data

making use of the mesh network. Also we are working toward creating a topological

display using the signal strength data.

DEC1618

14

5 Results

So far we have been able to test a few different devices to see if Serval would work

as well as purchasing standalone routers to help increase the usability for our

deliverable. Of the first 4 devices we purchase we bought 2 of 2 different types. One of

the types will not currently work with Serval so we will probably not be able to use these

devices for our project. We have done some work in installing the necessary software to

the routers so we may be able to use them and subvert the Serval issue but there are also

some design drawbacks we are considering.

We have tested a couple of different possible communication methods and chose

to pursue the router option. Once we complete our initial demo and project, we will be

revising our code and improving upon the look and optimization of our application and

libraries.

6 Conclusions
To summarize, we are feeling confident about our approach so far after taking

into consideration the work done so far and the results from testing the software and the

hardware ends. The best solution currently seems to use the routers to create an ad-hoc

network and then use bluetooth to map the topology. This solution would help us

overcome one major concern of rooting the android devices, thus avoiding the glitches

on unsupported devices. We are still learning newer and better alternatives as we

progress through the project. We are confident that with continued progress and

through multiple iterations we will find reasonable solutions to our concerns.

7 References

1. CyanogenMod/Serval Mesh

DEC1618

15

○ Nexus 7 Rooting Instructions:

http://www.teleread.com/uncategorized/how-to-root-and-mod-a-nexus-7-2012/

○ CyanogenMod Instructions:

https://wiki.cyanogenmod.org/w/Install_CM_for_grouper

○ CyanogenMod Version:

cm-12-20150625-SNAPSHOT-YNG4NAO09M-grouper.zip

2. Mesh Extender

○ http://developer.servalproject.org/dokuwiki/doku.php?id=content

:meshextender:prototyping_on_mr3020

○ http://www.amazon.com/TP-LINK-TL-MR3020-Wireless-Portable

-Router/dp/B00634PLTW

○ http://www.ebay.com/itm/2pcs-RFD-900-MHz-Ultra-Long-Range

-Radio-Telemetry-Modem-with-FTDI-Antenna-IN-US-/301579827973?hash=ite

m46378efb05:g:9UQAAOSwqu9VGkS4

○ http://www.amazon.com/SanDisk-Cruzer-Low-Profile-Drive--SDC

Z33-016G-B35/dp/B005FYNSZA/ref=sr_1_2?s=pc&ie=UTF8&qid=1454221838

&sr=1-2&keywords=SanDisk+Cruzer+Fit%E2%84%A2+tiny+USB+memory+stic

k

 3. Serval Project : http://developer.servalproject.org/

DEC1618

http://www.teleread.com/uncategorized/how-to-root-and-mod-a-nexus-7-2012/
https://wiki.cyanogenmod.org/w/Install_CM_for_grouper
http://download.cyanogenmod.org/get/jenkins/115584/cm-12-20150625-SNAPSHOT-YNG4NAO09M-grouper.zip
http://developer.servalproject.org/dokuwiki/doku.php?id=content:meshextender:prototyping_on_mr3020
http://developer.servalproject.org/dokuwiki/doku.php?id=content:meshextender:prototyping_on_mr3020
http://www.amazon.com/TP-LINK-TL-MR3020-Wireless-Portable-Router/dp/B00634PLTW
http://www.amazon.com/TP-LINK-TL-MR3020-Wireless-Portable-Router/dp/B00634PLTW
http://www.ebay.com/itm/2pcs-RFD-900-MHz-Ultra-Long-Range-Radio-Telemetry-Modem-with-FTDI-Antenna-IN-US-/301579827973?hash=item46378efb05:g:9UQAAOSwqu9VGkS4
http://www.ebay.com/itm/2pcs-RFD-900-MHz-Ultra-Long-Range-Radio-Telemetry-Modem-with-FTDI-Antenna-IN-US-/301579827973?hash=item46378efb05:g:9UQAAOSwqu9VGkS4
http://www.ebay.com/itm/2pcs-RFD-900-MHz-Ultra-Long-Range-Radio-Telemetry-Modem-with-FTDI-Antenna-IN-US-/301579827973?hash=item46378efb05:g:9UQAAOSwqu9VGkS4
http://www.amazon.com/SanDisk-Cruzer-Low-Profile-Drive--SDCZ33-016G-B35/dp/B005FYNSZA/ref=sr_1_2?s=pc&ie=UTF8&qid=1454221838&sr=1-2&keywords=SanDisk+Cruzer+Fit%E2%84%A2+tiny+USB+memory+stick
http://www.amazon.com/SanDisk-Cruzer-Low-Profile-Drive--SDCZ33-016G-B35/dp/B005FYNSZA/ref=sr_1_2?s=pc&ie=UTF8&qid=1454221838&sr=1-2&keywords=SanDisk+Cruzer+Fit%E2%84%A2+tiny+USB+memory+stick
http://www.amazon.com/SanDisk-Cruzer-Low-Profile-Drive--SDCZ33-016G-B35/dp/B005FYNSZA/ref=sr_1_2?s=pc&ie=UTF8&qid=1454221838&sr=1-2&keywords=SanDisk+Cruzer+Fit%E2%84%A2+tiny+USB+memory+stick
http://www.amazon.com/SanDisk-Cruzer-Low-Profile-Drive--SDCZ33-016G-B35/dp/B005FYNSZA/ref=sr_1_2?s=pc&ie=UTF8&qid=1454221838&sr=1-2&keywords=SanDisk+Cruzer+Fit%E2%84%A2+tiny+USB+memory+stick

